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PREFACE 

The work reported herein was conducted by the Arnold Engineering 
Development Center (AEDC),  Air Force Systems Command (AFSC). 
The work was done by ARO,  Inc.  (a subsidiary of Sverdrup & Parcel 
and Associates,   Inc. ),  contract operator of AEDC,  AFSC,  Arnold Air 
Force Station, Tennessee.   The work was performed under ARO Proj- 
ect No.   VF215,   and the manuscript (ARO Control No.  ARO-VKF-TR- 
73-137) was submitted for publication on October 1,   1973. 
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1.0   INTRODUCTION 

The formation of condensed gases on cryogenic ally cooled surfaces 
has recently received attention in regard to how the resulting coating 
affects the reflection and transmission of visible and infra-red (IR) 
radiation.    Sensor testing requires knowledge of condensed gas coating 
reflectances and transmittances because film deposits formed on the 
sensor system transfer optics (which are cryogenically cooled) can af- 
fect their absolute throughput.   These condensed gas deposits both ab- 
sorb and scatter visible and IR radiation.    Scattering and absorption 
are functions of both wavelength and coating thickness.    In addition,   if 
collimated light is incident upon optical surfaces coated with condensed 
gases, the transmitted and reflected light will no longer be collimated. 
Thus it becomes important to know the angular distribution of the re- 
flected and transmitted energy.    Presently,  work is under way to ex- 
perimentally determine the effects of gas deposits formed on cryogeni- 
cally cooled (20CK) lenses, filters,  windows,  mirrors,  and opaque sub- 
strates such as black paint and stainless steel. 

Experimental data are important in determining the effects of coat- 
ing thickness and viewing angle,  as well as wavelength,  upon reflect- 
ance and transmittance.    However,   it is useful to have analytical or 
theoretical expressions which mathematically model the reflectance 
and transmittance behavior.    First,  the analytical expressions are 
valuable in understanding the reasons behind the behavior of the ex- 
perimental data.    (Also,   the theoretical expressions can be used to de- 
termine the magnitude of the various contributing processes such as 
scattering,  absorption,  substrate effects, front interface reflectance, 
etc.    In this regard,  the theory really complements the experimental 
data. )   Second,  when the theory and the data both show the same quan- 
titative behavior (as in Ref.   1),  then the theory and experimental data 
may be used to determine the thickness and important optical properties 
of the condensed gas coating such as refractive index,  absorption index, 
scattering coefficient,  and absorption coefficient.    When scattering and 
absorption are both present,  the optical properties and thickness may 
be obtained through using experimental data in conjunction with the so- 
lution to the radiative transport equation (as was done in Ref.  1). 

The results obtained in Ref.   1 were determined by solving the ra- 
diative transport equation by the Milne predictor-corrector method. 
This method works,  but it is cumbersome to use and requires a signif- 
icant amount of computer time.    In an attempt to find a simpler and 
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faster technique,  three different methods for solving the radiative 
transport equation are presented and compared.    First, the transport 
equation is solved iteratively by the Milne predictor-corrector finite- 
difference method.    Second,  an integral equation formulation for the 
source function is solved by successive approximations; knowing the 
source function leads directly to obtaining the intensity as a function of 
viewing angle and optical thickness.    Third, the Chandrasekhar eigen- 
value,   eigenvector solution is shown in comparison with the other two 
techniques.    It is important to have several solution techniques be- 
cause each technique possesses a distinct advantage over the others. 
The Chandrasekhar method is simple and fast,   but it is applicable only 
when the absorption and scattering coefficients are not functions of 
coating thickness.    The other two techniques are still applicable even 
when the optical properties vary with coating thickness. 

In choosing three techniques for comparison,   it is useful to review 
some previous work requiring solution of the radiative transport equa- 
tion.    Wolf (Ref.   2) numerically solved the transformed (by discrete 
ordinates) transport equation via Simpson's rule.    After reducing the 
transport equation to a system of linear ordinary differential equations, 
Wolf obtained solutions for problems involving absorbing,   emitting, 
and scattering media with an arbitrary specified temperature profile. 
In Ref.   1 the Milne predictor-corrector numerical scheme was used 
to investigate the reflectance behavior of absorbing and internally scat- 
tering cryodeposits. 

The formulation of an expression for the source function was per- 
formed by Merriam (Ref.   3).    Merriam's technique leads to an integral 
equation, the solution of which describes the source function.    Once the 
source function is known,  the radiant intensity behavior can be directly 
computed. 

Besides the integral equation formulation and the numerical solu- 
tion,  other solutions to the transport equation have been obtained through 
the computation of eigenvalues and eigenvectors.    When a Gaussian quad- 
rature (discrete ordinates) is used to approximate the integral term in 
the transport equation,  a system of simultaneous differential equations 
is obtained.    The eigenvalues and eigenvectors associated with the coef- 
ficient matrix of the system of differential equations can be used to ob- 
tain the homogeneous solutions;  emission gives rise to particular solu- 
tions.    Once the general solution is known,  the boundary conditions are 
enforced to evaluate the integration constants.    Hottel,   et al.  (Ref.  4) 
employed the method of discrete coordinates to compute the biangular 
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reflectance from an absorbing and anisotropically scattering medium. 
The system of differential equations was solved by computing the eigen- 
values and eigenvectors.    Merriam (Ref.  3) has also made use of the 
method of discrete ordinates;   eigenvalues and eigenvectors were com- 
puted by the "method of Danilevsky" as described by Faddeeva (Ref. 5). 
Hsia and Love (Ref.   6) also have published a computational method of 
monochromatic heat transfer in the plane, one-dimensional case of a 
parallel atmosphere separated by a cloud of particles.    Applying the 
method of discrete ordinates, they solved the resulting set of differen- 
tial equations by obtaining eigenvalues and eigenvectors utilizing the 
method of idempotents.    Another particularly attractive method for 
the computation of eigenvalues and eigenvectors for solution of the 
transport equation in association with both isotropic and anisotropic 
scattering is that of Chandrasekhar (Ref.  7).    Chandrasekhar's method 
yields an equation which readily permits the extraction of the eigen- 
values instead of requiring,  as in Ref.   5,  the determination of the char- 
acteristic polynominal before attempting computation of the eigenvalues. 
In addition to the works mentioned above there are numerous other solu- 
tion methods such as considering radiant transport through optically 
thick media to be a diffusion process (Ref.   8).    Also, the transport equa- 
tion has been solved by Callis via the method of characteristics (Ref.  9). 

As mentioned earlier,  the three techniques chosen for study are 
the Chandrasekhar method,  the source function integral equation formu- 
lation,  and a numerical solution by the Milne predictor-corrector 
scheme.    These three were chosen because they are easy to understand 
and simple to apply,  and because they serve as useful tools to the engi- 
neer.    Also,   it is useful to have several different solution techniques 
available, as one technique may possess a distinct advantage over the 
others.    In order to form a basis for comparison of the three solution 
techniques,  a standard problem has been selected to which the different 
methods will be applied.    The problem chosen is that of an absorbing 
and isotropically scattering dielectric medium which will be more fully 
described in the next section of this report.    Isotropic scattering was 
assumed in order to avoid perplexion with a highly sophisticated scat- 
tering function.    However,  all three methods presented can be extended 
for application to anisotropically scattering media.    Emission was con- 
sidered negligible in order not to require particular solutions nor to 
have to choose a specific temperature profile or temperature level. 
Again, the three techniques discussed here can easily be extended to 
include emission once the temperature profile and level of temperature 
have been prescribed. 
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The three solution procedures-are compared with one another,  and 
the Chandrasekhar method is used to make a comparison between re- 
sults obtained by single and double Gaussian quadratures.    Hottel,   et al. 
(Ref.   4) have used both double and single Gaussian quadrature approxi- 
mations in response to the proposal in Ref.   10 that,  because of the dis- 
continuity of the intensity for JU = 0 at the bounding interfaces,  the quad- 
rature formulas should be applied separately in the ju  ranges of -1 to 
0 and 0 to 1.    They employed as many as 20 double Gaussian quadrature 
directions (points) and 24 single Gaussian quadrature directions and ob- 
served no appreciable difference between the two types of quadratures. 
Hsia and Love (Ref.   6) have used the double Gaussian quadrature (8 
points) in their work, whereas Wolf (Ref.  2, 8 points),  Roux (Ref.   1, 
10 points),   Merriam (Ref.   3,   24 points),  and Chandrasekhar (Ref.   7) 
have all employed the single Gaussian quadrature.    One purpose of this 
paper is to determine whether there is any computational advantage 
(with respect to accuracy,   convenience,  or computer time) of using the 
single as compared to the double Gaussian quadrature.    In addition, for 
each quadrature approximation the influence of the number of quadra- 
ture points is investigated;  as many as 96 points were used for the 
single Gaussian quadrature, and as many as 48 points were utilized 
for the double Gaussian quadrature. 

2.0   STATEMENT OF THE PROBLEM 

In order to compare the three techniques for solving the transport 
equation it was necessary to select a sample problem to which they 
would be applied.    The geometry and coordinate system for the selected 
problem are shown in Fig.   1.    The nomenclature employed in Fig.   1 is 
essentially the same as that used in Refs.  1 and 3;  regions 1,  2,  and 
3 respectively represent vacuum,   radiatively participating medium, 
and opaque substrate.    The radiant intensity (I0) incident on the radi- 
atively participating (dielectric) medium from vacuum is taken to be dif- 
fusely distributed.    The dielectric coating is partially transparent,   and 
the opaque substrate is considered to be either a conductor or a di- 
electric having negligible emission.    The vacuum-coating interface is 
assumed to reflect radiant intensity in accordance with Fresnel's equa- 
tions and to transmit radiant intensity according to Snell's law.    The 
substrate is taken to be a Fresnel reflector.    Since the interface re- 
flectance for radiant intensity traveling from vacuum to coating and the 
interface reflectance for intensity traversing from coating to vacuum are 
not the same for equal angles of incidence,  the two interface reflectances 
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are designated as pi2 and P2i,  respectively.   Also,  the interface re- 
flectance for intensity incident on the substrate is designated as P23. 
Further, the interior of the radiatively participating coating is consid- 
ered to be absorbing and isotropically scattering with negligible emis- 
sion.   Furthermore, the absorption and scattering coefficients (and 
hence albedo) are considered not to be functions of the local position 
y in the participating film.    In addition,  the radiative intensity is as- 
sumed to be axisymmetric;  this means that the intensity field is de- 
pendent on the polar angle 8 but not on the aximuthal angle <f> .    The sam- 
ple problem thus defined via Fig.   1 was used to compare the three so- 
lution procedures through the prediction by each technique of the mono- 
chromatic hemispherical-directional reflectance. 

Vacuum: nis 1.0 
1 

T0 - / (o+k)dy 
o 

Coating:  o, k, n? 

2 

Substrate: 713 
3 

Figure 1.  Coordinate system and geometry. 
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3.0   ANALYSIS 

Now that the sample problem has been physically defined,  the math- 
ematical presentation of the governing equations will be given.    After 
the transport equation and boundary conditions are shown,   each of the 
three solution techniques will be applied to the problem as a subsection 
of the analysis.    The radiative transport equation subject to the above 
stated assumptions is 

iliML = ^ML + ± /«^ov (l) 

where Kr./i) is the local radiant intensity,  I(T,JU),  nondimensionalized 
by the diffusely incident intensity I0 (Fig.   1); n   is the cosine of the in- 
ternal polar angle 0 defining the direction of UT.JU);  W = a/(a+k) is the 
albedo parameter;   and T is the local optical depth,  which is related to 
the position coordinate y by 

T =  /V+k)dy (2) 
o 

with a and k being the scattering and absorption coefficients,  respec- 
tively.    As previously stated,  the coating boundaries were considered 
to have only regular Fresnel reflection and refraction; expressed math- 
ematically, these boundary conditions are 

Kr0,-n) = p21(/i) i(r0,/x) - [l-Pi^1))11! <3> 

for the vacuum-coating interface and 

J(M = P23W *<°>-M> (4) 

for the coating-substrate interface where n2 is the refractive index of 
the coating and ju* is the cos 0j,  with 0^ being the polar angle external 
to the radiatively participating medium (Fig.   1).    The directions ju  and 
M    are related by Snell's law, 

and TQ = r(y=L) where L is the coating geometrical thickness. 

3.1   METHOD OF CHANDRASEKHAR 

The basic objective of the method of Chandrasekhar is computation 
of the eigenvalues and eigenvectors of the coefficient matrix associated 

10 
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with the system of simultaneous ordinary linear differential equations 
resulting from the use of discrete ordinates.   Once the eigenvalues and 
eigenvectors are determined, the homogeneous solution is known; the 
integration constants are then directly obtainable from the boundary 
conditions.    Before the eigenvalues and eigenvectors can be computed, 
the transport equation,   Eq.  (1),  together with the boundary conditions, 
Eqs.  (3) and (4),  must be first transformed into a system of differential 
equations by the method of discrete ordinates.    This consists of replac- 
ing the integral term in Eq.  (1) by a Gaussian quadrature of the form 

/ fU)dx =   X   a. f(Xj) (6) 

where x-j is the quadrature points (discrete ordinates),  a-j is the quadra- 
ture weights,  and p (which is an even integer) is the order of the quad- 
rature approximation.    Replacing the integral term in Eq. (1) by Eq. 
(6) yields a system of p simultaneous differential equations 

di(r,M£l        -i(rl/tg) w     P 
   =    + —   1   a-Ur^:), t=l p (7) 

dr pig 2ptg j=i    I     r> 

with boundary conditions 

i(r0.-fte)  =   P2iW>i(ro»M)  +  [1-P]2(M£1)]n2'£=1 P/2 (8) 

and 

i(0,ng) = p23(fie)KO,-fig)     ,     &=1 p/2 (9) 

The coefficient matrix of Eq.  (7) can be written as 

B£j = (Waj/2-Sej)/M    ,    t,\ =  1 p (10) 

where 6JJM is the Kronecker delta.    This matrix has exactly the same 
form whether the single Gaussian quadrature is employed over the in- 
terval -1 <^ß < 1 as shown in Eq. (6) or whether the double Gaussian 
quadrature is used separately in the regions 0 to 1 and -1 to 0.    For 
the latter case,  the double Gaussian quadrature of order p/2 is used 
twice, thus giving a-p x p coefficient matrix of the form in Eq.  (10). 
The quadrature points and weights are different for the two cases,  but 
in both instances they possess the common properties 

Pk = -Vp+i-k    '    ak = Vi-k    '    k = l P/2 <U) 

II 
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It has been shown (Ref.   11) that the p eigenvalues associated with 
the p x p coefficient matrix,  Eq.  (10),  are the p values of A which sat- 
isfy the expression 

fp/2 -If   p/2 *-J\2 "I 
(12) 

Note that Eq.  (12) is a function of X2.    It is known that the roots A   are 
positive or zero as shown in Fig.   2.    Thus,  the eigenvalues occur as 
plus and minus pairs.    When W = 0,  the first factor of Eq.   (12) must 
be zero,  giving the p eigenvalues as X^ = ±1/MJ, j = 1,.. .,  p/2.    If 

M 2 MS 

Note: Plot is not to scale. 

Figure 2.  Sketch illustrating graphical solution for the 
eigenvalues, p = 6, Ref. 11. 

12 
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W t 0, the second factor must be zero.    Setting the second factor equal 
to zero and simplifying,  one finds the eigenvalues must satisfy the 
equation 

p/2    a.^2x2 J 

J=l  (l-jxfA2)       ff 

which is equivalent to that obtained in Ref.   7, 

p/2      «i , 
s —— = i (14) 

if one notes that the term -1 on the right side of Eq.  (13) is equivalent 
p/2 

to - £ a-;.    When W = 1.0, the right side of Eq.  (13) is zero, and it is seen 
j=l   J 

that X2 = 0 is a root.    Thus,  zero is an eigenvalue with multiplicity of 
two and requires a special form of the homogeneous solution in order 
to insure linearly independent solutions.    Plotting simultaneously g(X2) 
and 1/W-l versus X2 yields the solutions X2 where g(X2) and (1/W-l) in- 
tersect.    Figure 2 is an illustrative plot for p = 6,  but the analysis is 
valid for any even integer p.    It is seen from Fig.  2 that the values X2 

satisfying Eq.  (13) must be positive or zero.    Thus,   all the eigenvalues 
must be real and must occur in plus and minus pairs except for W = 1, 
where two of the eigenvalues are equal to zero.    Also, from Fig.  2 one 
can readily establish the bounds for the roots X2.    For this example, 
0 < X2^ ljp\ < x| £. l//i2 < X?j £. 1/n?}.    Thus all the roots X2 have indi- 
vidual bounds.    Using these bounds,  the numerical solution for the roots 
of Eq.  (13) may be easily obtained.    The homogeneous solution of Eq. 
(7) for Wf 1.0 is given by 

iM> = |'^^[cjO-tye)eAJr - Vi-/1'^1'] • Ul> (15) 

where the c's are the p number of integration constants determined from 
the boundary conditions.    Substitution of Eq.  (15) into Eqs.  (8) and (9) 
yields a system of p nonhomogeneous linear algebraic equations to be 
solved for the p values of c;  use of the Gauss- Jordon method or Cholesky 
method (see Ref.  12) readily allows determination of the integration 
constants.    For the special case of W = 1.0,  the double eigenvalue X^ = 
Xp=0 causes Eq.  (15) to have the special form (Ref.   13) 

p/2   l-Aj^r _\.T _-\.f\ 
i(r,n)  =  Cj  +   c (r-n)  +   X    fyhd-Ay^e J    -   cp+     (1 + XjM)e    >      ,    U,...,p 

3     1~kHilL J (16) 

13 



AEDC-TR-73-200 

Chandrasekhar (Ref.   7) also has expressions equivalent to Eqs.  (15) 
and (16) if one defines the Chandrasekhar integration constants,  c} and 

Cp+l-j.   as 

ej   = (I-Aj^pcj    and    c}+H =  (1 - Ayi.)cp+H (17) 

It should be noted that Eqs.  (15) and (16) yield the solution of Eq.  (7) 
in the p quadrature directions.    If information is required in directions 
other than the quadrature directions,  then interpolation must be used 
among the solutions in the quadrature directions.    A final comment 
stressing the simplicity of this technique is that once the eigenvalues 
are obtained from Eq.  (13) (which is easily done since their bounds are 
known),  the homogeneous solution is immediately given by Eq.  (15) or, 
if W = 1.0,  by Eq.  (16).    Only the integration constants remain to be 
found,   and these can readily be obtained by standard computer library 
routines for solving systems of nonhomogeneous linear algebraic 
equations. 

The eigenvectors have already been included in Eqs.  (15) and (16), 
and they are functions only of the quadrature points and the eigenvalues. 
Information on the derivation of the eigenvectors is available in Refs. 
7,   11,  and 13. 

3.2   SOURCE FUNCTION FORMULATION 

Solution of the transport equation,   Eq.   (1),  along with the boundary 
conditions,   Eqs.  (3) and (4), through the source function formulation 
was accomplished by solving an integral equation describing the source 
function.    The intensity field was then computed through its direct re- 
lation to the source function.    In order to arrive at the integral equation, 
let Eq.  (1) be rewritten as 

dr n       ~    n 

where <D(T) is the normalized source function 

Mr)  =  j  /iO-,V)V * A'.ft')"V] U9) 

14 
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Solving Eq.  (18) for the normalized intensity yields solutions for the 
intensity in the upward (positive n) and downward (negative (j.) directions 
as 

iM   =  i(0,^)e-^  +   f^e-^^^ (20) 
o ¥■ 

and 

i(r^)  =   i(r0>-,>e-(r°-r)/'X H   j\rf.^'^ (21) 

where now in Eqs.  (20) and (21) 0 < ju < 1.0.    From Eqs.  ^20) and (21) 
it is observed that the intensity in the upward and downward directions 
is directly related to the normalized source function.    Hence, once the 
source function is known, the intensity field can be directly evaluated. 
The procedure to be followed here in determining the source function 
is first to find i(0,u) and KT0, -ß) in Eqs.  (20) and (21) through the 
boundary conditions.    Once i(0,ju) and i(TQ, -/J.) are known,  then Eqs. 
(20) and (21) are substituted into Eq.  (19),  resulting in one integral 
equation to be solved for the one unknown, 4>(T). 

For the problem defined in this paper,  the integral equation is ob- 
tained by proceeding as outlined above.    From Eqs.  (20) and (21) it is 
found that 

i<r.*> = no^r^ + /W
r°-l)/" i <22) 

and 

K<W)   =   i(r0,-vx)e~ro//i   +  | Vi)e-Vfc i (23) 

Substituting the expressions i(TQ,u) and i(0, -u) from Eqs.  (22) and (23) 
into Eqs.  (3) and (4) readily yields the values i(0,/u) and i(T0, -ß) needed 
in Eqs.  (20) and (21).    With i(0tju) and KT0> -JU) known,   Eqs.  (20) and 
(21) are substituted into Eq.  (19), which,  after the indicated algebra is 
performed, becomes the integral equation describing 4>(T), 
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w["i ti-Pi^1«' 
2  i D(f0., 

■| ,„*.>.-*.---> itl-^^1)]"!^-^ 
*W  =  rl/ — nTT"" «V + /    55755  «V 

00 // o o D^o'^ /* 

-V2r +r-t)/fi _(2ro-r-t)/fi 

-(2r0-rf»)//i 

» 0 D(r„,«) u (24) 

where 
-2r /ft 

D(r0,/i)   =   1 - p2\(fi) /»23^e      ° (25) 

The solution of Eq.  (24) was obtained through the method of successive 
approximations.   At first glance Eq.  (24) appears to be quite compli- 
cated;  however,  closer observation reveals that this is not so.    First 
notice that the integrands of the first two integrals of Eq.   (24) are all 
known functions, hence these integrals only need to be evaluated once. 
Since their values can readily be computed,  these terms do not have to 
be reevaluated during the process of successive approximations.    A 
similar observation is noticeable concerning the integration with re- 
spect to /u-in .the last five terms on the right side of Eq.  (24).    In the 
last five terms of Eq.  (24) all the functions which are integrated with 
respect to M are known functions;   thus the integration with respect to 
ju need only be performed once during the process of successive approxi- 
mations.    These observations can result in a significant saving of com- 
puter time, but a large amount of storage is required since the values 
of the integrals with respect to ju in the last five terms of Eq.  (24) must 
be stored at each t and r combination (t occurs in the exponent of the 
exponential inside the integration with respect to ß). 

The solution of Eq.  (24) was determined at discrete T values by the 
method of successive approximations.    The integration with respect to 
H was performed by using 10 Gaussian quadrature points.    The 
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integration with respect to t was accomplished via Simpson's rule with 
the optical thickness, T0,  divided into 50 equal intervals.    The initial 
guess at the solution for $(T) was $(T) = 0.0.    The initial guess at *'(T) 
is substituted into the right-hand side of Eq.  (24),  and an improved 
estimate of $(T) is computed.    This process is repeated until converg- 
ence is considered to have been obtained.    In this work the successive 
approximations were repeated until the maximum difference between 
two successive calculations of <b{r) at any T station was less than 0.0001. 
Once the process of successive approximations has converged,  the 
value i(T0,u) can be directly computed from 

-2r0//i        /0 ^     -<ro-t)//i  ^ 

V- 

*   P23W / W°+t)/*  f)/{ - p21(,)P23We-2r>) (26) 

The integrals in Eq.   (26) were again evaluated via Simpson's rule.   The 
expression i(r0, /u),  as will be shown,  is needed to compute the hemi- 
spherical-directional reflectance.   Note that Eq.  (26) yields informa- 
tion in the quadrature directions and in all other directions;  no inter- 
polation is required to obtain information in the nonquadrature direc- 
tions,  as is necessary for the Chandrasekhar method and the predictor- 
corrector numerical solution. 

3.3  NUMERICAL SOLUTION 

After the transport equation and boundary conditions,   Eqs.  (1), (3), 
and (4),   were transformed by the use of discrete ordinates into the sys- 
tem of equations given in Eqs. (7) through (9),   solution was obtained by 
the Milne predictor-corrector method.    The system of equations to be 
solved is the same system as that solved by the Chandrasekhar method. 
The primary advantage of the numerical solution (and source function 
formulation) is that the system of differential equations can be allowed 
to have variable coefficients; the Chandrasekhar method, although 
powerful,  is applicable only when the system of differential equations 
has constant coefficients.    In the application of the predictor-corrector 
method to the system of equations,  the number of steps utilized in the 
numerical calculations was varied from 50 to 200.    The mathematical 
expressions for the predictor-corrector method adapted to i(T, /ijg), 
£ = 1, . . .,  p/2 are 
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Predictor 

i <'n+l'Wrt  =   '(r^,^)  +   y|2jf(rB«)  - ~(r^in)  +  2^ (rn_2>^)| (27) 

Corrector 

and for KT.JUJJ),  -4 - p/2 +1,   . . . ,   p are 

Predictor 

'(rm-l'Wrt   "   '0-m+3'M)   +   VL2^('m'''£)   "   Tr^n+l'^   +   2 JT (rm+2^J (29) 
Corrector 

i 

where n = 4, 5, . ..,  N and m = N-4,  N-3, . . . 1 with K being the number 
of stations employed in marching from 0 to TQ,  and h the step size, 
h = T0/(N-1). 

In order to use Eq.  (27),  one must know the derivatives at Tn,  Tn_i, 
and T

n_2'    These values can be determined directly from the differential 
equations only after the corresponding values at Tj,  T2,  T3,  and T4 are 
known.    Hence,  a starting equation such as the modified Euler or Runge- 
Kutta technique must be employed.    Using the modified Euler technique 
and the predictor-corrector method, the system of differential equa- 
tions,   Eq.  (7),   was solved iteratively.    Since this problem is-boundary 
valued,   it was necessary to make an initial guess of the intensity field 
at the top (T=TQ) and bottom (T = 0) interfaces before a starting equation 
could be employed.    The initial guess was made by use of a generalized 
version of the dual beam approximation discussed in Ref.  8.    This gen- 
eralized dual beam approximation (Ref.   14) not only allows guessing 
the intensity field at T = 0 and T=T0 but also permits guesses at any of the 
N stations associated with T in each of the p quadrature directions cor- 
responding to ß.    The quadrature directions of the intensity traveling 
upward toward the vacuum-deposit interface are/ijg.  & = 1, ... ,p/2,  and 
those associated with intensity traveling toward the deposit-substrate 
interface are Mjg, j?=p/2+l, ..., p. 

The actual iteration routine used was a forward and backward in- 
tegration scheme which proceeds as follows:   (1) The input parameters 
such as refractive indices,  optical thickness,  and albedo are chosen; 
(2) the interval between 0 and TQ is divided into equal intervals at N 
stations,  and the order,  p,  of the single Gaussian quadrature is selected; 
(3) the generalized dual beam approximation was used to obtain an initial 
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guess of the dimensionless radiation field in the p quadrature directions 
at every T station.    For example, T=T0,  an initial guess was obtained 
for UTQ.IU^),  4=p/2+l, ....  p/2;   (4)   Eq.   (7),  4=p/2+l, . . ., p,  was inte- 
grated backward (downward) over T  from T=TQ to T = 0 by holding the 
guessed values of KT,^), 4 = 1,. . .,p/2 constant and calculating new 
values of i{j,m)t 4 = p/2+l, . . ., p by use of Eqs.   (29) and (30);  (5)   after 
arriving at T = 0,  the boundary condition; Eq.  (9),  was used to compute 
new values of i(0,/ijg),  4 = 1,...,  p/2;   (6)   Eq.   -(7),  4 = 1, . .., p/2,   was 
integrated forward (upward) from T = 0 to T=T0 by holding the newly cal- 
culated KT./ijg), 4=p/2+l, . .., p values constant and computing new val- 
ues of KT.JU^),  4 = 1, . ..,  p/2 through the use of Eqs.   (27) and (28) (After 
arriving at T=T0 new values of i(T0jju^), 4 = 1, . . .,  p/2 were available.); 
(7)   the values of   i(r0,/ijg)i - L(T0,Mje)0|üj-4 = 1,..., p/2 were compared 
with a given tolerance.    (In this case the maximum value had to be less 
than 0. 001.    If the difference in any quadrature direction was greater 
than the given tolerance,  the boundary condition,   Eq.  (8),  was used to 
find new values for i{j0,ß$), 4=p/2+l, ..., p,  and the entire backward 
and forward marching process was begun again at step 4. );   (8) the 
procedure in steps 4 through 7 was continuously repeated until the maxi- 
mum difference between the values of i(TQ,/u^), 4 = 1, ...,  p/2, for two 
successive iterations was within the given tolerance. 

3.4  DEFINITION OFphdfo1) 

Before proceeding into a discussion of the results,   it is necessary 
to define the hemispherical-directional reflectance.    The hemispherical- 
directional reflectance is the ratio of the intensity reflected from an in- 
finitesimal area,  dA,  collected in a specific angular direction to the dif- 
fusely incident intensity which is hemispherically distributed.    Mathe- 
matically, the hemispherical-directional reflectance for the problem 
defined in Fig.   1 is 

PhriV1)   ■   P12(P'>   + 

"2 
(31) 

lated to A«
1
 by Eq.  (5). Equation WI1CIC   \±- 1/ UoJ 

(31) can be used directly in conjunction with Eq.   (26) to determine PuAv-) 
through the source function formulation.    For the Chandrasekhar tech- 
nique and the predictor-corrector method,  solution to the transport 
equation was obtained in terms of the dimensionless intensity in the ju^ 
quadrature directions.    The hemispherical-directional reflectance in 
terms of the quadrature directions becomes 

•fro«) 
,2 PhM] = Piafc? + [l-p2i

(w)l—^ (32) 

"2 
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where (l-l/n^)1'2 < u^ < 1,  1 = 1, ...,  p/2 with ß\ related to ng by 
Snell's law,  Eq.  (5).    The value of 1(T0,^) in Eq.  (32) was obtained 
either from the predictor-corrector solution or from the Chandrasekhar 
solution via Eq.   (15) for W 4 1.0 or via Eq.   (16) for W = 1.0. 

4.0   RESULTS 

The results obtained from the three solution techniques will now be 
compared.    Because the numerical agreement of some of the results 
was so good,   it was decided that the results should be illustrated through 
the use of tables instead of by showing several coincident curves on a 
figure.    Tables 1 and 2 show a comparison of the hemispherical- 
directional reflectance results predicted by the various methods for 
U2 = 1.2 and TQ = 0.5 and 5.0 and corresponding to the various jui quad- 
rature directions.    The results shown were obtained using a 10-point 
single Gaussian quadrature.    Only Pn(j(M   ) in three of the five upward 
directions is shown since the other two directions correspond to inten- 
sity trapped in the coating because of being incident at the coating- 
vacuum interface at angles greater than the critical angle.    Also shown 
in Tables 1 and 2 are the results obtained by the method of Danilevsky 
(Ref.  5).    This method should be considered as a "library" program 
since the actual programming of the Danilevsky technique was not per- 
formed by the authors of this report. 

Table 1.  Comparison of PhdlM1) Results for the Three Solution 
Techniques: n2 = 1.2, W = 0.4 

Substrate <■! T0 Chandrasekhar Danilevsky 
Numerical 
Solution 

Source 
Function 

Black Paint 

ni-L48-iaOO 

0. 96220 
0 79850 
a 47403 

as a 04557 
a 04998 
0.08522 

0.04557 
0.04998 
0.08522 

a 04657 
005008 
008795 

a 04774 
0.04895 
0.07732 

0.96220 
a 79850 
a 47403 

5.0 0.06271 
a 06741 
o. 10120 

0.06277 
006741 
0.10120 

a 06271 
006741 
a. ioi3o 

a 07019 
007161 
0.09893 

Steel 

ü3-2.48-i3.43 

a 96220 
179850 
0.47403 

0.5 02527 
0.2352 
0.2202 

0.2528 
a 2353 
02202 

02520 
0.2363 
a 2272 

0.2567 
0. 2348 
a 2107 

0.96220 
a 79850 
a 47403 

5.0 a 06275 
a 06743 
0.10120 

a 06275 
0.06743 
a 10120 

a 06271 
006741 
0.10130 

a 07022 
0.07162 
a 09895 
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Table 1.  Concluded. 

Substrate «4 T 
0 Chandrasekhar Danilevsky 

Numerical 
Solution 

Source 
Function 

Aluminum 

n3-1.44-i5.32 

196220 
179850 
147403 

15 13663 
13374 
12965 

13662 
0.3374 
12965 

13676 
13373 
12974 

13721 
13380 
12865 

196220 
179850 
147403 

5.0 106277 
a 06744 
110130 

106271 
106744 
110130 

106271 
106741 
110130 

107024 
107164 
109896 

Copper 

n3-0,S2-113.00 

196220 
179850 
147403 

15 14400 
14045 
13491 

14397 
14044 
13490 

14418 
14044 
13498 

14475 
14063 
13394 

196220 
0.79850 
147403 

5.0 106278 
106744 
110130 

106278 
106744 
110130 

106271 
106741 
110130 

107025 
107165 
109897 

Table 2.  Comparison of p„d (M1 ) Results for the Three Solution 
Techniques: n2 = 1.2, W = 1.0 

Substrate »1 To Chandrasekhar Danilevsky 
Numerical 
Solution 

Source 
Function 

Black Paint 

rij- L48-iaOO 

196220 
179850 
147403 

15 0.1591 
0.1742 
0.2293 

11591 
11742 
12294 

11591 
11742 
12294 

0.1688 
11698 
11951 

196220 
179850 
a 47403 

5.0 16903 
17058 
17391 

16903 
0.7058 
17391 

16861 
17018 
17356 

NC3 

Steel 

n3-2.48-13.43 

196220 
179850 
147403 

15 15011 
0.5025 
15188 

15013 
15026 
15190 

15015 
15029 
15192 

15338 
15114 
14795 

196220 
179850 
147403 

5.0 17454 
17581 
17854 

17455 
17581 
17855 

17407 
17535 
17826 

NCa 

Aluminum 

n3-L44-15.32 

196220 
179850 
147403 

15 17468 
17444 
17453 

17468 
17444 
17453 

17472 
17448 
17457 

17881 
17626 
17243 

196220 
179850 
147403 

5.0 0.8222 
18310 
18501 

18222 
18310 
0.8501 

18346 
18428 
18606 

NCa 

Copper 

n3-182-113.00 

196220 
179850 
147403 

0.5 19615 
19606 
0.9596 

19609 
19603 
19593 

19619 
19611 
0.9601 

19951 
19727 
19460 

196220 
179850 
147403 

5.0 19600 
19620 
19663 

19597 
0.9617 
0.9660 

19709 
19723 
19754 

NCa 

No convergence after 50 iterations using 50, 101 and 200 integration steps for T0 and 10 
quadrature points for the integration with respect to u in the interval 0 < u <  1, Eq. (24). 
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The Danilevsky method was used to compute the coefficients of the 
characteristic polynominal from the coefficient matrix,   Eq. (10).    The 
eigenvalues are the roots of the characteristic polynominal and were 
determined by the Newton-Raphson method;  then the eigenvectors were 
constructed.    With the eigenvalues and eigenvectors known, the inte- 
gration constants were determined via the Cholesky method.    The 
Danilevsky method,  as used here,  was found not to be capable of hand- 
ling a coefficient matrix larger than 16 x 16 since the trace of Eq.   (10) 
yielded a contradiction.    The trace,  which is the sum of the roots 
(eigenvalues) of the characteristic polynominal,  was no longer equal to 
the sum of the diagonal elements of the coefficient matrix,   Eq.  (10). 
The results obtained by the Danilevsky method have also been included 
in Tables 1 and 2 as an additional indication of the accuracy of the other 
results shown. 

Table 1 corresponds to W = 0.4,  and Table 2 corresponds to results 
obtained for W = 1.0.    The agreement of the results predicted by the 
various techniques,  as illustrated in Table 1,   is seen to be good;  the 
agreement obtained by the Chandrasekhar solution,  Danilevsky method, 
and numerical method is excellent.    Table 2 (W = 1.0) also shows ex- 
cellent agreement among the Chandrasekhar solution,  Danilevsky method, 
and numerical solution;  however,  the successive approximations solu- 
tion to the integral equation did not converge for large T0 values.    Table 
2 also shows poor agreement for the integral equation solution at small 
T0 values. 

The Chandrasekhar and Danilevsky methods,   as expected,   were 
found to be several orders of magnitude faster than the predictor- 
corrector method or integral equation solution.    The Chandrasekhar 
and Danilevsky methods have the same common disadvantage in that 
both are applicable only when W is not a function of T.    The Chandrase- 
khar method is the superior of the two because it permits easier and 
more accurate determination of the eigenvalues,  it is faster with re- 
spect to computer time,  and (as will be shown) it permits much higher 
order quadrature approximations (96 x 96) with essentially no sacrifice 
of accuracy.    The Chandrasekhar solution (Eq.   15 or 16) also has the 
eigenvectors explicitly known,  whereas for the Danilevsky method the 
eigenvectors must be repeatedly constructed.    The computation of the 
eigenvalues by the Chandrasekhar method is extremely fast,  and the 
pncj(/^l) is directly given by Eqs.  (15) or (16) and (32). 

For W = 0.4, both the predictor-corrector method and the succes- 
sive approximations technique (for the integral equation) were found to 

22 



AEDC-TR-73-200 

converge very rapidly;  the amount of computer time required to obtain 
a solution was about the same for both cases,  with the predictor- 
corrector solution being slightly faster.    The predictor-corrector 
method was probably faster because the dual beam approximation (Ref. 
14) was employed as an initial guess criterion.    For all practical pur- 
poses,  however,   the two methods are equivalent with respect to com- 
puter time.    The successive approximations procedure required about 
6 iterations to converge,   whereas the numerical solution required less 
than 6 and often only 3 iterations.    The predictor-corrector solution 
was found to have better agreement with the Chandrasekhar results. 

For W = 1.0, the Chandrasekhar and Danilevsky methods were again 
very fast.    However,   the predictor-corrector technique was found now 
to require about 12 iterations before converging.    This was probably 
because the initial guess method did not yield as good an initial guess 
at W = 1.0 as at W = 0.4.    In spite of the increased number of iterations, 
the predictor-corrector solution was still found to be sufficiently fast 
that its use and accuracy {as seen from Tables 1 and 2) are practical. 
For W = 1.0,  the successive approximations solution for the source func- 
tion was found to become very slow,  with convergence not always attain- 
able even after 50 iterations for rQ = 5.0,  and the accuracy was not good 
when convergence was attained for TQ = 0.5.    In general it was found that 
the successive approximations solution of the integral equation became 
very slow as W -* 1.0,  and fine AT grid (as compared to the predictor- 
corrector method) was required to achieve good accuracy.    Results for 
W < 0. 7 by this method were found to converge in a reasonable amount 
of computer time.    The amount of computer time required for conver- 
gence by both the predictor-corrector and successive approximations 
methods was found to increase as W increased and as TQ increased.   The 
convergence speed should be expected to decrease as TQ increases, 
since the ATQ intervals are larger.    For very large T0(T0>7) values it is 
necessary to use more integration steps than the 50 used in the 
predictor-corrector method.    The Chandrasekhar method,  on the other 
hand,  can be shown to be applicable even for a semi-infinite medium 
(TQ -*■ «).    For the semi-infinite medium,  p/2 (or half) of the integration 
constants in Eq.  (15) and (16) become zero. 

Now the Chandrasekhar technique will be utilized to compare the 
results obtained by using either the single or double Gaussian quadra- 
ture and also to compare the agreement obtained by using different or- 
ders of each type of quadrature.    Table 3 shows the angular variation 
of PhjjGul) for TQ = o.25 and n2 = 1.2 and for a range of W for different 
substrates.    The results shown in Table 3 were obtained by using 
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Table 3.  Comparison of phd (M1 ) Results for the Single and 
Double Gaussian Quadratures for Various Orders of 
Quadrature: n2 = 1.2, , r0 = 0.25 

Quadrature Quadrature 
81 

Aluminum Steel Black Paint 
Type3 Order W»0.4 W-0.7 W»1.0 

S 96 1.714 0.5442 a 4127 0.0857 
S 80 2.054 0.5441 0.4130 0.0859 
S 48 3.410 0.5445 0.4132 a 0862 
S 96 3.934 0.5442 a 4127 0.0857 
S 80 4 716 0.5443 0.4128 0.0858 
D 48 4.773 0.5436 a 4118 0.0852 
S 32 5.089 0.5448 a 4137 0.0868 
D 40 5.704 0.5424 0.4102 0.0840 
S 96 6.169 0.5438 0.4125 0.0859 
S 24 6.753 0.5401 0.4071 0.0814 
D 32 7.087 0.5404 0.4076 0.0819 
S 80 7.397 0.5435 0.4124 0.0861 
S 48 7.833 0.5436 0.4128 0.0865 
s 20 8.073 0.5419 0.4102 a 0844 
s 96 a 411 0.5430 0.4122 a 0862 
s 16 10.04 0.5442 0.4145 0.0887 
s 80 10.09 0.5426 0.4121 0.0865 
s 96 10.66 0.5422 0.4118 0.0864 
D 48 10.96 0.5415 0.4109 0.0858 
D 20 11.14 0.5448 0.4172 a 0910 
S 32 11.70 0.5425 a 4127 a 0875 
S 48 12.30 0.5418 a 4120 0.0871 
s 80 12.79 0.5412 0.4115 0.0868 
s 96 12.91 0.5411 0.4114 0.0868 
D 40 13.11 0.5424 0.4089 0.0848 
S 10 13.12 0.5393 0.4105 0.0873 
S 96 15.17 a 5398 0.4108 0.0872 

s 80 15.49 a 5396 0.4108 0.0874 

s 24 15.55 0.5359 a 4051 0.0826 
D 32 16.29 0.5357 0.4054 a 0832 
S 48 16.79 a 5390 a 4108 0.0880 
D 48 17.21 a 5378 a 4093 0.0870 
S 96 17.43 0.5382 a 4101 0.0877 
s 80 18.21 a 5377 0.4099 a 0880 
s 32 18.41 a 5382 0.4108 0.0889 
s 20 18.61 0.5359 a 4075 a 0863 

s 96 19.71 a 5364 0.4093 0.0883 
D 40 20.58 a 5340 0.4065 0.0865 

S 80 20.95 0.5354 a 4089 a 0888 

D 10 21.30 0.5263 a 3954 a 0780 

S 48 21.32 a 5353 0.4092 0.0893 

s 96 22.00 0.5343 0.4084 0.0890 

s 16 23.21 0.5349 a 4105 a 0918 
D 48 23.49 0.5322 0.4068 0.0889 

s 80 23.70 a 5327 0.4077 0.0897 
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Table 3.   Continued 

Quadrature Quadrature 
Bl 

Aluminum Steel Black Paint 
Type3 Order W-0.4 W-0.7 W-1.0 

S 96 2430 a 5320 0.4074 0.0898 
S 24 2452 a 5280 0.4016 0.0850 
S 32 25.21 0.5317 0.4080 a 0911 
D 32 25.62 0.5271 0.4016 0.0859 
D 20 25.68 a 5344 0.4124 a 0950 
S 48 25.90 0.5306 0.4071 0.0909 
S 80 26.47 0.5296 0.4064 0.0908 
s 96 26.61 a 5294 0.4062 0.0907 
D 40 28.13 0.5259 0.4029 0.0893 
s 96 28.94 0.5294 0.4050 0.0917 
s 80 29.26 a 5262 0.4049 a 0920 
s 20 29.45 a 5244 0.4025 0.0902 
D 48 29.84 a 5247 0.4036 0.0915 
S 10 30.11 0.5145 0.3999 0.0966 
S 48 30.55 0.5248 0.4046 0.0931 
S 96 31.29 0.5234 0.4037 0.0930 
S 80 32.09 0.5223 a 4033 0.0935 
S .32 32.15 0.5229 0.4043 0.0944 
5 96 33.67 0.5199 0.4022 0.0944 
S 24 33.74 0.5159 0.3962 0.0893 
S 80 3495 0.5181 O.4015 0.0953 
D 32 35.10 0.5141 0.3959 0.0907 
S 48 35.28 0.5178 0.4017 0.0959 
D 40 35.80 a 5148 0.3982 0.0936 
S 96 36.07 0.5162 0.4007 0.0959 
D 48 36.27 0.5152 0.3996 0.0954 
S 16 36.94 a 5166 0.4029 0.0994 
S 80 37.84 0.5133 0.3996 a 0974 
S 96 38.49 0.5121 0.3990 0.0978 
S 32 39.30 0.5115 0.3996 0.0996 
S 48 40.12 0.5096 a 3985 0.0997 
D 20 40.67 0.5125 a 4037 0.1049 
S 20 40.75 0.5065 0.3951 0.0978 
S 80 40.79 0.5081 a 3976 0.0999 
S 96 40.96 0.5077 a 3973 0.1000 
D 48 42.83 0.5035 0.3950 0.1011 
S 24 43.38 a 4990 0.3893 0.0970 
S 96 43.46 0.5031 0.3955 0.1026 
D 40 43.65 0.5008 0.3926 0.1004 
S 80 43.79 0.5025 0.3954 0.1030 
D 32 4487 0.4965 0.3888 a 0992 
S 48 45.12 0.5002 0.3949 a 1050 
S 96 46.01 a 4980 0.3937 a 1056 
S 32 46.78 0.4973 0.3944 0.1077 
S 80 46.87 0.4964 0.3933 0.1068 
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Table 3.  Concluded 

Quadrature 
Type3 

Quadrature 
Order 

Aluminum 
W-0.4 

Steel 
W=0.7 

Black Paint 
W=1.0 

s 10 47.20 -0.4679 0.3890 -a 1430 
s 96 48.62 0.4928 0.3920 a 1093 
D 48 49.62 a 4900 0.3903 a uoo 
s 80 5a 03 a 4899 a 3912 a 1116 
D 10 5a 07 0.4797 0.3756 -a0986 
S 48 5a 33 a 4896 0.3915 a 1126 
s 96 5L30 a 4872 0.3903 a 1138 
D 40 51.84 0.4841 0.3871 a 1123 
s 16 5L85 0.4881 0.3932 a 1177 
s 20 53.00 a 4819 a 3869 a 1149 
s 80 53.30 a 4832 0.3894 0.1178 
s 24 53.80 a 4776 0.3823 a 1129 
s 96 5407 0.4815 0.3890 a 1194 
s 32 54.82 0.4809 a 3900 0.1223 
D 32 55.23 0.4751 0.3824 0.1167 
S 43 55.86 0.4784 0.3890 0.1243 
S 80 56.72 0.4832 0.3883 0.1261 
D 48 56.78 0.4754 a 3871 0.1253 
D 20 56.81 0.4808 a 3950 0.1321 
S 96 56.94 a 4759 a 3882 0.1266 
S 96 59.95 0.4706 0.3884 0.1362 
S 80 60.34 0.4701 a 3886 0.1378 
D 40 6a 71 0.4673 a 3855 0.1364 
S 48 61.91 0.4682 0.3899 0.1445 
S 96 63.15 0.4663 0.3903 0.1496 
S 32 63.92 0.4664 a 3925 0.1548 
s 80 64.24 0.4653 0.3917 0.1552 
D 48 64 71 0.4641 0.3911 a 1567 
S 24 66.05 a 4595 a 3873 0.1593 
s 96 66.62 0.4642 a 3957 0.1694 
D 32 67.11 a 4598 0.3903 0.1670 
s 20 67.82 a 4625 0.3959 a 1756 
s 80 68.57 a 4649 0.4010 0.1840 
s 48 68.91 a 4656 0.4027 0.1874 
s 96 7a 48 a 4674 0.4082 0.2013 
s 16 70.67 a 4699 0.4123 a 2063 
D 40 71.31 a 4670 0.4089 0.2073 
S 80 73.68 a 4774 0.4270 a 2401 
D 48 74.57 a 4811 0.4329 a 2526 
S 96 75.06 0.4847 0.4383 a 2615 
S 32 76.14 a 4930 0.4505 a 2820 
s 48 78.49 0.5154 0.4808 a 3335 
D 20 79.19 a 5283 0.4981 a 3568 
S 80 80.78 0.5489 0.5231 0.4002 
s 96 81.44 a 5617 0.5386 a 4237 

a S - Single Gaussian Quadrature       D - Double Gaussian Quadrature 
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single Gaussian quadratures of orders 10, 16, 20, 24, 32, 48, 80, and 96, 
and double Gaussian quadratures of orders, 10, 20, 32, 40, and 48.   Table 
3 shows no very large or significant differences from one order of quad- 
rature to the other or in the double quadrature.    The points which show 
the biggest variation from the rest of Table 3 are the quadrature direc- 
tions which transmitted through the coating-vacuum interface into the 
largest 8\ directions for p = 10.    As noted by the arrows in Table 3, 
d\ = 47.20 and Q\ = 50.07 show the largest variation,   and both corre- 
spond to p = 10 for the single and double Gaussian quadratures,   respec- 
tively.    To clarify what is meant by quadrature order in Table 3,  a 32- 
point quadrature (double or single) means 16 positive and 16 negative 
quadrature directions; or,  the quadrature order can be considered as 
the size of the pxp coefficient matrix in Eq.  (10) (in this case,   32 x 
32).    Figure 3 is a graphical representation of some of the results in 
Table 3 and is presented in order to more clearly illustrate the agree- 
ment between the single and double Gaussian quadratures for n2 = 1.2. 
Table 3 and Fig.  3 show that there is essentially no advantage with re- 
spect to accuracy in using one type of Gaussian quadrature over the 
other.    However, from a computational point of view,  it is recommended 
since both are essentially the same,  that the single Gaussian quadrature 

0.60 

0.50 

0.40 

»0.30 

0.20 - 

ni 1.2 

W  =1.0 ^3 

Single Gaussian 
Quadrature 

O10 
0 96 

0.25 
1.48-i0.00 (Black Paint) 

Double Gaussian 
Quadrature 

a 10 
o 48 

c? 

0.10 boDoadoDofiDodbo caoooo^p 
oPc 

10 20 30 40 50 60 70 80 90 
% deg 

Figure 3.  Comparison of pha (M1) results for various orders of single 
and double Gaussian quadratures. 
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be used.    There are two reasons for this.    First, for a given order of 
quadrature,  the largest eigenvalue is much smaller for the single Gaus- 
sian quadrature than for the double Gaussian quadrature,  as is shown 
in Fig.   4.    (The results shown in Fig.   4 can be considered valid for all 
values of W since the size of the maximum eigenvalue only changes by 
about ±1 on the ordinate scale in going from W = 0.0 to W = 1.0. )   This 
means that computations can be made to a much larger optical thick- 
ness, T0, with the single quadrature than with the double quadrature 
since this largest eigenvalue occurs as a positive number in the expo- 
nent of Eqs.  (15) and (16);  the double quadrature will cause computer 
overflow at a much smaller rQ value.    The second advantage is that the 
double quadrature directions correspond to larger angles than do the 
single quadrature directions.    This means that more double quadrature 

400 

300 

max 

5 
200 

100 

■ Computer Overflow Even for rn • 0.25 

Double Gaussian Quadrature 

.---< Single Gaussian Quadrature 

J_ _L _l_ J_ 

0     10    20     30     40    50    60     70     80     90 

Quadrature Order 

Figure 4.   Effect of quadrature order on maximum eigenvalue. 

28 



AEDC-TR-73-200 

directions are greater than the critical angle,  and thus PhdO^1) is com- 
puted in fewer directions for the double quadrature since the others are 
trapped inside the coating.    This situation becomes even more evident 
as the refractive index n2 increases.    The advantage of having more 
quadrature directions transmit through the coating-vacuum interface 
is that the flux can be more accurately evaluated since the intensity is 
known in more directions.    Figure 5 demonstrates the difference be- 
tween the number of transmitted directions for the single and double 
quadratures an n2 increases. 

25 

in 
C 
O 
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"8 
S2 

in c 
to 

© 

cu 

E 

p - 48 Quadrature Order 

• Single Quadrature 
□ Double Quadrature 

15 

10  - 

5   - 

Figure 5.   Effect of refractive index on number of transmitted 
quadrature directions. 

Figure 6 shows that for n2 = 1.4 a 16-point single Gaussian quad- 
rature must be used to achieve accuracy.    Results are shown for both 
T0 = 0.25 and T0 = 5.0.    The 10-point Gaussian quadrature is seen to 
yield results that are too low.    Whereas the 10-point quadrature showed 

29 



AEDC-TR-73-200 

0.80 

0.70 

0.60 

~    0.50 

0.40- 

0.30 - 

0.20 

d$£ 

fcAODk   AO     G^ 
O kA   D CO A     * 

0 

V 

o 

■5.0- \ 

- l0" ■ 0. a f O 

Q    £K> O     QO QD Q 
0 

Single Gaussian 
Quadrature 

o   10 
D     16 

<o oa 
0 

Ö>    o 

n2 ■ 1.4 

W -1.0 

nO 
0D 

O   20 
A   24 

n3 -2.48 -13.43 (Steel) 

k   32 
0   48 

 l  J      1 i  l  ...    ,1 ,. 1     _. 
10 20 60 70 30        40 50 

8lf deg 

Figure 6.   Order of quadrature needed to achieve accuracy for n2 = 1.4. 

80 

good agreement in Fig.   3 for n2 = 1.2 (except for large öj),  it is seen 
that for n2 = 1.4 a higher order quadrature is needed for accuracy. 
This gives rise to speculation that as n£ increases the order of Gaus- 
sian quadrature needed for accuracy also increases;  Fig.   7 shows this 
to be true.    The results shown in Fig.  7 were obtained by increasing 
the quadrature order until two successive higher order quadratures 
showed good agreement.    The results given in Fig.  7 should be con- 
sidered as the minimum quadrature order needed for accuracy.    Higher 
order quadratures than those shown will likewise yield good accuracy. 
Although Fig.  7 is for the single Gaussian quadrature,   results were ob- 
tained for the double Gaussian quadrature which also showed the same 
dependence of accuracy upon quadrature order.    Hence,  Fig.  7 may be 
considered valid for both the double and single Gaussian quadratures. 
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Figure 7.  Effect of coating refractive index on quadrature order 
required for accuracy. 

5.0  DISCUSSION OF ERROR 

The three solution techniques and numerical formulas used in the 
solution of the transport equation were described in the analysis sec- 
tion of this report.    A discussion of the error is now presented so that 
confidence in the results presented may be achieved.    First, the 
Chandrasekhar method will be discussed,  and then the numerical solu- 
tion and successive approximations solution will be discussed.    From 
the discussion of the results in Table 3 it is concluded that the error 
introduced in using one type of quadrature as opposed to the other or 
different orders of quadrature is negligible.    Thus the error discussed 
here will pertain to using a fixed order of quadrature.    For the 
Chandrasekhar solution, the roots (X2) of Eq. (13) were found by an 
iterative procedure,  and the X2 values were considered to have been 
determined when two consecutive calculations were within 10"12 (double) 
precision) of one another.    Thus the eigenvalues (±X) were accurate to 
10"6.   Once the homogeneous solution,   Eq.  (15) or (16),  was obtained, 
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it became possible for error to be introduced in the determination of 
the p integration constants.    In order to estimate the error introduced 
through the Cholesky method,  which was used to determine the integra- 
tion constants,   the solutions,   Eqs.  (15) and (16),  were put back into the 
boundary conditions.    The right sides of Eqs.  (8) and (9) were subtracted 
from the left sides for each of the p/2 quadrature directions correspond- 
ing to each equation.    This was done for both the double and single Gaus- 
sian quadratures,  for W = 0.4,   0.7,   1.0,  for the four substrates used in 
Table 1,  and for T0 = 0.25.    It was found that the largest difference be- 
tween the two sides of Eqs.  (8) and (9) occurs at the small optical thick- 
nesses.    Thus,   Fig.  8 is shown for the small optical thickness,  TQ = 0.25. 
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Figure 8.   Effect of quadrature order on maximum error for 
Chandrasekhar method, r0 = 0.25. 
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Figure 8 shows the maximum error of all the quadrature directions as 
a function of quadrature order;  again,  this error represents the maxi- 
mum difference between the right and left sides of Eqs.  (8) and (9) for 
the range of conditions described above.    It is seen here that the double 
quadrature yields better accuracy than the single quadrature; however, 
Fig.   8 shows the error for both types and all orders of quadrature to 
be negligible.    The conclusion is that use of the Cholesky method intro- 
duced very little error into the final solution. 

Regarding the numerical solution,  it should be remembered that 
all numerical formulas are approximate since they usually involve the 
truncation of a Taylor series.    The evaluation of error associated with 
the numerical solution- is also approximate.    The purpose of the error 
term is to offer a means of obtaining a general idea of the error com- 
mitted by numerical solution using a particular step size. 

The predictor-corrector method is very convenient because it pro- 
vides a simple expression for the error per step estimate.    Call 
Epr(Tn+i) the error in computing ipr(Tn+l) ky using Eq.  (27);  call 
Eco(Tn+i) the error in computing iCo^Tn+l' by using Eq.  (25) to correct 
this predicted value of ipr(Tn-i-l^    Let Y(fn-i) be the actual value of 
i(Tn+i>; then 

Eco('„+1>=  Y(rn+1)  - ico(rn+1) (33) 

Epr('n+l)   =  Y(rn+])   ipr(rn+1) (34) 

Subtracting the first equation from the second gives 

'co^n+P   ~   »p^W   =   Epr<rn+l)   "   Eco^n+l) (35) 

The expressions for the error terms of the predictor and corrector are 
given respectively by 

and 
Eco<'„+i> = -^h5i<5)(x2) (37) 

where Xj is contained in the interval (Tn_3, rn+i) and X2 is contained in 
the interval (rn_ j, rn+i).    Let the assumption be made that h is suffi- 
ciently small that the variation between fö) (X\) and i(5) (X2) is 
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negligible;  then a small error is committed by using i(5) (x) as their 
approximate common value.    Hence subtracting Eq.  (37) from Eq.  (36) 
and replacing i(5) (X^) and i^5) (X2) with i^5) (X) results in 

Epr(rn+]) - Eco(,n+1) = gh»i<»<X> (38) 

Combining Eqs.  (35) and (38) yields 

W^i> -  ipt(rn+l) = I h= i^)(X) "= -29Eco(rn+1) (39) 

and therefore, 

Eco(rn-l)   =   tipr(^l)   -   W'n+1^29 <40) 

Equation (40) gives an approximate formula for the error commited per 
step of numerical integration by the Milne predictor-corrector method. 

For the purpose of plotting results which would indicate the signi- 
ficant general trends,   it was decided that the total maximum error be- 
tween two successive iterations of I(T0,H) [i = 1, . .. , p/2] should be 
less than 0.001;  thus the error per step should be less than 0.001 di- 
vided by the total number of steps.    Since 50 steps were used, the dif- 
ference between predictor and corrector at any station,  T,  for each 
quadrature direction should be 

V^n+l)   -   ico^n+l)   =   29 Eco(rn+1) (41) 

and the value of Eco(Tn+j) is approximated by 

EcoW = ^^  = "-IT = 0.00002 (42) co   n+l No. steps 50 

Thus,  at each integration station it was required that ipr - ico < 0.00058. 
Since the maximum optical thickness used was TQ = 5.0,  this corresponds 
to a "maximum" value of h = 0.1.    Since by Eq.   (37) the error per step 
is on the order of h^,  the value of EC0(Tn+^) =* 0.00001,  which is less 
than the value required by Eq.  (42).    The values presented correspond 
to the maximum error,  and again it should be mentioned that these ex- 
pressions give only a reasonable estimate of the error committed.    If 
the difference between predictor and corrector is not less than 0.00058, 
the corrector may be used again and again until two successive calcu- 
lations are within the given tolerance.    It was not necessary to use the 
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corrector more than once except for TQ = 5.0,  where at a few stations 
it was necessary for multiple use.    For the results requiring a maxi- 
mum error of 0.001 in UTQ,^) [JE = 1,. . . ,p/2] between two successive 
iterations,   it was only necessary to perform the calculations in single 
precision,  as will be shown later.    By an analysis similar to that, 
just presented it was possible to specify a maximum error of 10"5 be- 
tween two successive iterations of i(T0,ju.g) \ß- - 1,.. . , p/2],   if the cal- 
culations were performed in double precision. 

So far only the analysis for approximating the error associated 
with the numerical formula has been presented.    There are also round- 
off errors associated with any numerical calculation scheme.    An ef- 
fective procedure for determining the magnitude of the round-off error 
is to first carry out a calculation in single precision and then to use 
double precision to see if any significant difference is present.    How- 
ever,  the formula errors and round-off errors are usually coupled to- 
gether in such a way that they cannot be separately approximated. 

Probably the most effective method of.approximation of the coupled 
error is not only to use double and single precision but also to simul- 
taneously reduce the step size to one half its previous value and see if 
any significant changes occur.    In an attempt to make sure that the ac- 
curacy of the solution was within the stated tolerance,  the numerical 
solution using the 10-point single Gaussian quadrature was performed 
in both double and single precision and also for various step sizes. 
Table' 4 illustrates a comparison of the results for various step sizes 
and for the single and double precision calculations.    As should be ex- 
pected,  the results at the small optical thickness are much more ac- 
curate than those of the large optical thickness since the corresponding 
step size is one-tenth that of the larger optical-thickness step size.   As 
shown earlier in Table 1, these results are also in good agreement with 
the results obtained by the Chandrasekhar solution. 

Also shown in Table 4 is the sensitivity of the successive approxi- 
mations solution to the integration step size. The results shown are 
for demonstration purposes, and only single precision.calculations 
were performed. As in the predictor-corrector discussion, the error 
analysis was performed indirectly by varying the integration step size. 
Hence the solution of the integral equation is seen to be essentially in- 
sensitive to the integration step size. 
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Table 4.  phd (M1 ) Results for Various Step Sizes for the Milne 
Predictor-Corrector Technique, n2 = 1.2, W = 1.0, 
and for the Source Function Method, n2 = 1.2, W = 0.4 

»1 T0 

Predictor-Corrector. ft- 1.0 Source Fur 

Single 

iction, IV-0.4 

Double Precision 
50                  100 

Steps            Steps 

Single Precision Precision 

Substrate 
50 

Steps 
100 

Steps 
200 
Steps 

50 
Steps 

100 
Steps 

Black Paint a 96220 
0.79850 
a 47403 

05 a 1591 
a 1742 
a 2294 

a 1591 
a 1742 
02294 

0,1591 
01742 
0.2294 

11591 
0.1742 
12294 

11591 
11742 
12294 

104774 
104895 
107732 

104771 
0.04892 
0.07729 

n-l.48-i0.00 0.96220 
0.79850 
0.47403 

5,0 a 6863 
a 7019 
0.7356 

0.6961 
0.7018 
0.7356 

06878 
07052 
0.7367 

16878 
0.7033 
17368 

16B77 
0.7032 
0.7366 

107019 
107161 
109893 

0.06692 
0.06834 
0.09576 

Steel 0.96220 
0.79850 
0.47403 

05 a 5015 
0.5O29 
0.5192 

a 5015 
15029 
a 5192 

0.5015 
0.5029 
05192 

15015 
15029 
15192 

15015 
15028 
0.5192 

12567 
12348 
12107 

D.2567 
12347 
12106 

n - Z. 48 - i3.43 a 96220 
0.79850 
1 47403 

5,0 0.7404 
0.7533 
0 7813 

17407 
0.7535 
0.7826 

17423 
a 7550 
17826 

17423 
17550 
17826 

0.7422 
0.7549 
17825 

107022 
107162 
0.09895 

106695 
106836 
109577 

Aluminum a 96220 
0.79850 
a 47403 

0.5 0 7472 
0.7448 
a 7457 

0.7472 
0.7448 
0.7457 

0.7472 
0.7447 
0.7457 

17472 
17447 
17457 

17471 
17446 
17456 

13721 
13380 
12865 

13720 
13379 
12865 

n-1.44-15.32 0 96220 
1 79850 
a 47403 

5.0 a 8346 
a 8428 
a 8606 

0.8346 
0.8428 
a 8606 

18346 
0.8428 
13606 

18346 
18428 
18606 

18345 
18427 
18605 

107024 
107164 
109B96 

106698 
106838 
0.09579 

Capper a 96220 
0.79850 
0.47403 

0.5 0.9619 
a 9611 
19601 

0.9619 
a 9611 
0.9601 

19613 

19607 
19598 

a 9613 

19607 
19598 

19612 

19606 
19597 

14475 

14063 
13394 

0.4474 
0.4062 
0.3393 

n-0.82-il3.00 0.96220 
1 79850 
0.47403 

5.0 0.9709 
0.9723 
0.9755 

19709 
0.9723 
a 9754 

19706 
19721 
19752 

0.9706 
0.9720 
0.9752 

0.9705 
19720 
19751 

0.07025 
107165 
109897 

0.06699 
0.06839 
0.09580 

6.0  SUMMARY AND CONCLUSIONS 

Three solution techniques to the radiative transport equation have 
been demonstrated on a sample problem,  and a comparison of the three 
methods has been presented.    In addition,  a comparison of different 
orders of Gaussian quadrature was presented for both the double and 
single Gaussian quadrature approximations.    The Chandrasekhar solu- 
tion was found to be extremely fast; only the computation of the eigen- 
values required iteration,  and this procedure converged rapidly since 
the bounds for each eigenvalue were known.    The Milne predictor- 
corrector solution also converged very rapidly and yielded results 
which agreed extremely well with the Chandrasekhar solution for all 
four substrates,  for all values of W, for all 7^(0 -*• 5.0),  and for all 
viewing angles.    The successive approximations solution to the integral 
equation formulation was also found to converge rapidly for small values 
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of W(W <.0.70).    However,  for large values of W(0.70 < W < 1. 0) the in- 
tegral equation solution was found to converge very slowly,  and even 
when a solution was obtained,   its accuracy was not good.    After the 
three solution techniques were compared,  the Chandrasekhar method 
was used to compare various orders of Gaussian quadratures for both 
the single and double approximations.    Comparison of the double and 
single approximations for a fixed order of quadrature showed very little 
difference in accuracy.   However,   it was found that as the coating re- 
fractive index increased,  the order of the Gaussian quadrature had to 
be increased to maintain accuracy.    From a computational point of 
view, the single Gaussian quadrature was seen to have two advantages 
over the double quadrature.    First,  the largest eigenvalue is consider- 
ably smaller for the single quadrature approximation, thus allowing 
computation to much larger TQ values before encountering computer 
overflow.    Second,  the double quadrature directions correspond to 
larger angles measured from the substrate normal.    This means that 
more quadrature directions are trapped inside the coating past the crit- 
ical angle;  the result is that the single quadrature approximation has 
more quadrature directions which transmit through the coating-vacuum 
interface.    Hence more information is transmitted in more directions. 
This implies integration with respect to ß * in determining that flux can 
more accurately be performed. 

Finally,, a discussion of error for each technique was given,  and 
the sensitivity of the predictor-corrector and successive approxima- 
tions solutions to finite-difference step size was shown.    All three meth- 
ods presented are easy to understand and use; also,  the Chandrasekhar 
method can be used as an initial guess criterion for the other techniques 
when W is a function of T.    Furthermore,  all three techniques can be 
extended to include emission (particular solutions) and anisotropic 
scattering. 

The results discussed here are important in choosing which tech- 
nique to use when solving the radiative transport equation.    The solu- 
tion to the transport equation is a powerful tool to be employed in de- 
termining the reflectance and transmittance behavior of absorbing and 
scattering condensed gas coatings as a function of viewing angle,  coat- 
ing thickness,   absorption,   scattering,  and substrate effects.    Also,  the 
solution to the transport equation can be used in conjunction with ex- 
perimental data for determining the coating thickness and optical prop- 
erties of condensed gases. 
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